水下并联超空泡射弹外弹道数值分析
Numerical Analysis of External Trajectory of Underwater Parallel Supercavitation Projectiles
查看参考文献16篇
文摘
|
为获取水下并联发射超空泡射弹的弹道特性,基于重叠网格技术、RANS方程、Schnerr-Sauer空化模型和k-ε湍流模型,对超空泡射弹的水下同步发射与异步发射工况进行了多工况数值模拟研究。通过设置不同的弹丸间距与发射时间间隔,对比分析了并联超空泡射弹水下运动的流场特性与弹道特性。研究结果表明:对于水下同步发射,弹丸内侧空泡发展受到抑制,弹丸在不对称的水动力作用下向外侧偏转,当弹丸间距增加至4D以上时,两弹丸之间几乎无干扰;对于异步发射的先发弹丸,随着发射时间间隔的增加,其弹道偏移量先增大后减小;对于异步发射的后发弹丸,随着发射时间间隔的增加,侧空泡扩张的抑制作用逐渐解除,并有过度膨胀的趋势,时间间隔越大,速度衰减越慢。 |
其他语种文摘
|
To obtain the ballistic characteristics of supercavitation projectiles during underwater parallel launching, the underwater processes of synchronous and asynchronous parallel projectiles were simulated based on overset mesh,RANS equation,k-ε turbulence model and Schnerr-Sauer cavitation model. By setting different projectile spacing and launching time interval, the flow field characteristics and ballistic characteristics of underwater parallel supercavitation projectiles were compared and analyzed. The result shows that for underwater synchronous launching, the development of cavitation inside the projectile is inhibited,and the projectile deflects outwards under asymmetric hydrodynamic action. When the projectile spacing increases to be greater than 4D, there is almost no interference between the two projectiles. For asynchronous launch projectile, the offset of projectile increases first and then decreases with the increase of launch time interval. For the projectile launched after asynchronous launching,with the increase of launch time interval, the inhibitory effect of lateral cavitation expansion is gradually relieved,and there is a tendency of excessive expansion. The longer the time interval is, the slower the velocity attenuation is. |
来源
|
弹道学报
,2021,33(4):13-19,33 【核心库】
|
DOI
|
10.12115/j.issn.1004-499X(2021)04-003
|
关键词
|
超空泡
;
水下外弹道
;
并联发射
;
数值模拟
|
地址
|
1.
中北大学机电工程学院, 山西, 太原, 030051
2.
重庆长安望江工业集团有限公司, 重庆, 401120
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-499X |
学科
|
武器工业 |
基金
|
国防预研联合基金项目
|
文献收藏号
|
CSCD:7117790
|
参考文献 共
16
共1页
|
1.
Cameron P J. An experiment for the study of free-flying supercavitating projectiles.
Journal of Fluids Engineering,2011,133(2):021303
|
CSCD被引
6
次
|
|
|
|
2.
Neaves M D. All-speed time-accurate underwater projectile calculations using a reconditioning algorithm.
Journal of Fluids Engineering,2006,128(2):284-296
|
CSCD被引
16
次
|
|
|
|
3.
Abraham J. Modeling and numerical simulation of the forces acting on a sphere during earlywater entry.
Ocean Engineering,2014,76:1-9
|
CSCD被引
14
次
|
|
|
|
4.
Li D. Numerical and theoretical investigation of the high-speed compressible supercavitating flows.
Ocean Engineering,2018,156:446-455
|
CSCD被引
6
次
|
|
|
|
5.
施红辉. 攻角变化超空泡射弹冲击水面的流体物理现象研究.
弹道学报,2019,31(1):68-74
|
CSCD被引
2
次
|
|
|
|
6.
温俊生. 头型对回转体垂直入水时空泡面闭合影响的数值模拟.
浙江理工大学学报(自然科学版),2018,39(5):573-579
|
CSCD被引
3
次
|
|
|
|
7.
施红辉. 伴随超空泡产生的高速细长体入水实验研究.
力学学报,2012,44(1):49-55
|
CSCD被引
23
次
|
|
|
|
8.
魏英杰. 超弹性球体垂直入水空泡流动研究.
空气动力学学报,2020,38(4):780-787
|
CSCD被引
7
次
|
|
|
|
9.
陈晨. 射弹跨声速入水初期阶段多相流场特性数值研究.
振动与冲击,2019,38(6):46-53,61
|
CSCD被引
9
次
|
|
|
|
10.
Li Q. Numerical investigations of trajectory characteristics of a high-speed water-entry projectile.
Aip Advance,2020,10:95-107
|
CSCD被引
7
次
|
|
|
|
11.
Li Q. Numerical investigations of cavitation nose structure of a high-speed projectile impact on water-entry characteristics.
Journal of Marine Science and Engineering,2020,8(4):265
|
CSCD被引
3
次
|
|
|
|
12.
Jiang Y. Numerical simulations of series and parallel water entry of supersonic projectiles in compressible flow.
Ocean Engineering,2021,235(2):109155
|
CSCD被引
1
次
|
|
|
|
13.
何春涛. 圆柱体低速入水空泡试验研究.
物理学报,2012,61(13):281-288
|
CSCD被引
16
次
|
|
|
|
14.
路丽睿. 双圆柱体低速并联入水过程空泡及运动特性试验研究.
振动与冲击,2019,38(7):42-49
|
CSCD被引
7
次
|
|
|
|
15.
黄闯. 液体可压缩性对超空化流动的影响.
上海交通大学学报,2016,50(8):1241-1245
|
CSCD被引
12
次
|
|
|
|
16.
张鹤. 并联射弹水下运动实验研究.
舰船科学技术,2021,43(3):71-75
|
CSCD被引
4
次
|
|
|
|
|