微波对超声速燃烧火焰结构的影响
Influence of microwave on structure of supersonic combustion flame
查看参考文献35篇
文摘
|
超声速中等离子辅助燃烧是一种具有潜力的助燃方式。通过将低功率微波馈入超燃冲压发动机燃烧室的方式,研究了微波对火焰结构的影响。实验来流马赫数为2.5,常温乙烯燃料从壁面横向射流,以单级凹腔作为火焰稳定器,分别加入500W和700W连续2.45GHz的微波,利用高速相机拍摄火焰CH*发光图像。研究表明微波的加入使超声速火焰稳定结构发生改变,火焰的起始和稳定位置从凹腔剪切层向射流出口转移,表明微波对火焰传播速度或者燃烧反应速率有增强作用。同时利用火焰边界提取和分形几何的方法,发现微波能够增大火焰边界分形维度,分析认为火焰传播速度由于微波的加入而增加,证明小功率的微波对超声速燃烧有促进作用。 |
其他语种文摘
|
Plasma assisted combustion in supersonic flow is a promising method.The effect of microwave on the flame structure is studied by feeding low-power microwave into the combustor of the scramjet.The combustor inlet flow Mach number is 2.5.Room temperature ethylene is injected perpendicular to the combustor wall.Single stage cavity is used as flame stabilizer,and 500Wand 700Wcontinuous 2.45GHz microwave are added into the combustor.A high-speed camera is used to capture flame CH*illuminating images.After the addition of microwave,the stable position of the flame changes from cavity shear layer flame to jet flame,which indicates that the microwave has an effect on the flame propagation speed or the combustion reaction rate.Using the method of flame boundary extraction and fractal geometry,this paper finds that microwave can increase the fractal dimension of flame boundary,indicating that the propagation rate of flame increases due to the addition of microwave.The paper concludes that a low power of microwave can assist supersonic combustion. |
来源
|
航空学报
,2019,40(12):123224 【核心库】
|
DOI
|
10.7527/s1000-6893.2019.23224
|
关键词
|
超燃冲压发动机
;
超声速燃烧
;
火焰结构
;
微波
;
火焰边界
;
分形几何
|
地址
|
1.
中国科学院大学工程科学学院, 北京, 100049
2.
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-6893 |
学科
|
航天(宇宙航行) |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6636761
|
参考文献 共
35
共2页
|
1.
Billig F S. Research on supersonic combustion.
Journal of Propulsion and Power,1993,9(4):499-514
|
CSCD被引
30
次
|
|
|
|
2.
Ju Y G. Plasma assisted combustion:Dynamics and chemistry.
Progress in Energy and Combustion Science,2015,48:21-83
|
CSCD被引
104
次
|
|
|
|
3.
Dooley S. The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena.
Combustion and Flame,2012,159(4):1444-1466
|
CSCD被引
34
次
|
|
|
|
4.
Zhu S H. Flame stabilization and propagation in dual-mode scramjet with staged-strut injectors.
AIAA Journal,2017,55(1):171-179
|
CSCD被引
4
次
|
|
|
|
5.
Zhang Y. Hysteresis of mode transition in a dual-struts based scramjet.
Acta Astronautica,2016,128:147-159
|
CSCD被引
8
次
|
|
|
|
6.
Zhu S H. Intermittent backflash phenomenon of supersonic combustion in the stagedstrut scramjet engine.
Aerospace Science and Technology,2018,79:70-74
|
CSCD被引
4
次
|
|
|
|
7.
Zhang J L. Investigation of flame establishment and stabilization mechanism in a kerosene fueled supersonic combustor equipped with a thin strut.
Aerospace Science and Technology,2017,70:152-160
|
CSCD被引
3
次
|
|
|
|
8.
Masumoto R. Experimental study on combustion modes in a supersonic combustor.
Journal of Propulsion and Power,2011,27(2):346-355
|
CSCD被引
5
次
|
|
|
|
9.
Ju Y G. Plasma assisted combustion:Progress, challenges,and opportunities.
Combustion and Flame,2015,162(3):529-532
|
CSCD被引
12
次
|
|
|
|
10.
Starikovskiy A. Plasma-assisted ignition and combustion.
Progress in Energy and Combustion Science,2013,39(1):61-110
|
CSCD被引
87
次
|
|
|
|
11.
Li F. Plasma-assisted ignition for a kerosene fueled scramjet at Mach 1.8.
Aerospace Science and Technology,2013,28(1):72-78
|
CSCD被引
6
次
|
|
|
|
12.
Cai Z. Spark-enhanced ignition and flame stabilization in an ethylene-fueled scramjet combustor with a rear-wall-expansion geometry.
Experimental Thermal and Fluid Science,2018,92:306-313
|
CSCD被引
9
次
|
|
|
|
13.
Feng R. Experimental investigation on gliding arc discharge plasma ignition and flame stabilization in scramjet combustor.
Aerospace Science and Technology,2018,79:145-153
|
CSCD被引
10
次
|
|
|
|
14.
Li X H. Cavity ignition of liquid kerosene in supersonic flow with a laser-induced plasma.
Optics Express,2016,24(22):25362
|
CSCD被引
3
次
|
|
|
|
15.
An B. Experimental investigation on the impacts of ignition energy and position on ignition processes in supersonic flows by laser induced plasma.
Acta Astronautica,2017,137:444-449
|
CSCD被引
7
次
|
|
|
|
16.
Jaggers H C. The effect of electric fields on the burning velocity of various flame.
Combustion and Flame,1971,16(3):275-285
|
CSCD被引
14
次
|
|
|
|
17.
Shinohara K. Enhancement of burning velocity in premixed burner flame by irradiating microwave power.
Journal of Physics D:Applied Physics,2009,42(18):182008
|
CSCD被引
2
次
|
|
|
|
18.
Khodataev K V. Microwave discharges and possible applications in aerospace technologies.
Journal of Propulsion and Power,2008,24(5):962-972
|
CSCD被引
5
次
|
|
|
|
19.
Baurov A Y. External combustion of high-speed multicomponent hydrocarbon-air flow under conditions of low-temperature plasma.
Moscow University Physics Bulletin,2013,68(4):293-298
|
CSCD被引
2
次
|
|
|
|
20.
Shibkov V M. The spatial-temporal evolution of combustion under conditions of low temperature discharge plasma of liquid alcohol injected into an air stream.
Moscow University Physics Bulletin,2012,67(1):138-142
|
CSCD被引
2
次
|
|
|
|
|