帮助 关于我们

返回检索结果

空间激光干涉引力波探测
Gravitational wave detection by space laser interferometry

查看参考文献124篇

罗子人 1   白姗 2   边星 3   陈葛瑞 4   董鹏 2   董玉辉 1   高伟 2   龚雪飞 2   贺建武 3   李洪银 5   李向前 4   李玉琼 1   刘河山 1   邵明学 2   宋同消 3   孙保三 5   唐文林 2   徐鹏 2   徐生年 2   杨然 2   靳刚 1  
文摘 为印证广义相对论和开拓引力波天文学窗口,引力波探测是当前国际研究热点.本文围绕空间激光干涉引力波探测,对其科学意义、发展状况、关键技术等进行了回顾.与地面激光干涉引力波探测相比,空间探测的工作频段更低,从10~(-4)~10Hz,在工作距离为百万公里量级上,预计能探测到双致密星系统、超大质量比双黑洞绕转系统、中等质量比双黑洞绕转系统,以及星系合并引起的超大质量黑洞并合等波源.为此,测距精度须达到皮米的量级,并且保证测距技术有效工作的无拖曳航天技术亦有很高的要求.本文以欧洲的空间激光引力波探测计划为例,主要对上述两项技术进行分析和阐述,并展望了空间引力波探测在我国的发展趋势和前景.
其他语种文摘 Gravitational wave detection is now more than a mere verification of Einstein's relativity. It opens a brand-new window to explore gravitational wave astronomy, therefore attracts increasing attention of scientists from all over the world. Focusing on space laser interferometer gravitational wave detection, we give a comprehensive review on its scientific objectives, recent status and key technologies. With arm-length being of million kilometers, a space detector works within a frequency band from 0.1mHz to 10Hz. Its possible sources include compact binary star system, extreme mass ratio inspiral, intermediate mass ratio inspiral, super mass black hole merge, etc. The success of space gravitational wave detection mission requires a pico-meter precision laser interferometer, and a state-of-the-art dragfree control system. Taking European space gravitational wave detector as an example, we analyze space laser interferometer and drag-free control system in detail. The trend and perspective of Chinese space gravitational wave detection mission are also discussed.
来源 力学进展 ,2013,43(4):415-447 【核心库】
DOI 10.6052/1000-0992-13-044
关键词 引力波探测 ; 激光干涉测距系统 ; 无拖曳航天技术 ; 惯性传感器 ; 微推进器 ; 引力波天文学
地址

1. 中国科学院力学研究所, 北京, 100190  

2. 中国科学院数学与系统科学研究院, 北京, 100190  

3. 首都师范大学物理系, 北京, 100048  

4. 北京工业大学应用数理学院, 北京, 100022  

5. 华中科技大学物理学院, 武汉, 430074

语种 中文
文献类型 研究性论文
ISSN 1000-0992
学科 物理学
基金 中国科学院科研装备研制项目 ;  中国科学院战略性先导科技专项 ;  空间科学预先研究项目 ;  理论物理国家重点实验室(中国科学院理论物理研究所)开放课题基金
文献收藏号 CSCD:4912782

参考文献 共 124 共7页

1.  Abbott B P. LIGO: The laser interferometer gravitational-wave observatory. Reports on Progress in Physics,2009,72:076901 CSCD被引 23    
2.  Abbott B. Limits on gravitational-wave emission from selected pulsars using LIGO data. Physical Review Letters,2005,94:181103 CSCD被引 2    
3.  Abbott B. Analysis of LIGO data for gravitational waves from binary neutron stars. Physical Review D,2004,69:122001 CSCD被引 4    
4.  Abbott B P. Searches for gravitational waves from known pulsars with science run 5 LIGO data. The Astrophysical Journal,2010,713:671 CSCD被引 4    
5.  Abramovici A. LIGO: The laser interferometer gravitational-wave observatory. Science,1992,256:325-333 CSCD被引 56    
6.  Accadia T. Status and perspectives of the Virgo gravitational wave detector. Journal of Physics: Conference Series, 203(012074),2010 CSCD被引 1    
7.  Audley H. The LISA Pathfinder interferometry|hardware and system testing. Classical and Quantum Gravity,2011,28:094003 CSCD被引 2    
8.  Amaro-Seoane P. Low-frequency gravitationalwave science with eLISA/NGO. Classical and Quantum Gravity,2012,29:124016 CSCD被引 16    
9.  Ando M. Stable operation of a 300m laser interferometer with su±cient sensitivity to detect gravitational-wave events within our galaxy. Physical Review Letters,2001,86:3950-3954 CSCD被引 5    
10.  Antoniadis J. A massive pulsar in a compact relativistic binary. Science,2013:340 CSCD被引 1    
11.  Armstrong J W. Timedelay interferometry for space-based gravitational wave searches. The Astrophysical Journal,1999,527:814 CSCD被引 15    
12.  Astone P. The gravitational wave detector NAUTILUS operating at hiiTh=ii = 0:1 K. Astroparticle Physics,1997,7:231-243 CSCD被引 2    
13.  Babak S. The mock LISA data challenges: From challenge 3 to challenge 4. Classical and Quantum Gravity,2010,27:084009 CSCD被引 6    
14.  Barack L. Using LISA extreme-mass-ratio inspiral sources to test off-Kerr deviations in the geometry of massive black holes. Physical Review D,2007,75:042003 CSCD被引 8    
15.  Barriga P. AIGO: A southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors. Classical and Quantum Gravity,2010,27:084005-1-084005-12 CSCD被引 5    
16.  Bassner H. Development steps of the RF-ion thrusters RIT. Proceedings 27th International Electric Propulsion Conference,2001:15-19 CSCD被引 1    
17.  Bender P L. Additional astrophysical objectives for LISA follow-on missions. Classical and Quantum Gravity,2004,21:S1203 CSCD被引 12    
18.  Bender P. LISA pre-phase a report. Max-Planck-Institut fAur Quantenoptic, Garching,1998 CSCD被引 1    
19.  Bender P L. Wavefront distortion and beam pointing for LISA. Classical and Quantum Gravity,2005,22:S339 CSCD被引 11    
20.  Berti E. Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA. Physical Review D,2006,73:064030 CSCD被引 10    
引证文献 57

1 罗子人 地球重力场空间探测:回顾与展望 力学进展,2014,44(1):291-337
CSCD被引 6

2 侯振东 纯引力轨道检验质量的相对测量技术 力学进展,2015,45(1):496-520
CSCD被引 1

显示所有57篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号