纳米碳材料基复合燃烧催化剂的应用研究进展
Research Progress in the Application of Nano Carbon Based Composite Combustion Catalysts
查看参考文献100篇
文摘
|
总结了不同纳米碳材料基复合燃烧催化剂在固体推进剂中的研究与应用,分析了碳纳米管、石墨烯、纳米碳纤维、纳米炭黑、纳米活性炭等碳材料及其复合物对推进剂及其组分的热分解和燃烧调节作用,如降低AP、RDX等氧化剂的分解峰温、提高推进剂的燃烧速率和降低压强指数等。讨论了不同轻质纳米碳材料的特性和作为载体与金属粒子及其氧化物等结合形成负载催化剂的制备方法和燃烧催化作用。建议今后研究方向应致力于:拓展如碳点、含氮碳材料等新材料的设计及制备等,提高纳米碳材料基复合燃烧催化剂的催化活性;对纳米碳材料进行表面结构改性,以提高纳米粒子分散性;深入探究纳米碳基复合材料在固体推进剂中的催化机理以开展定向应用研究;对已有研究进行总结推演,利用机器学习快速设计和筛选高效燃烧催化剂,有效改善固体推进剂燃速、压强指数及燃烧稳定性等。 |
其他语种文摘
|
The researches and applications of different nano carbon based composite combustion catalysts in solid propel lants were summarized. The catalytic effects and combustion regulation effects of carbon nanotubes, graphene, carbon nanofibers, nano carbon black, nano activated carbon and their composites on the thermal decomposition of solid propel lants and solid pro-pellant components were analyzed, for example,the decomposition peak temperature of oxidizer such as AP and RDX is decreased, and the combustion rate of propel lant is increased and the pressure index is lower. The characteristics of different light nano carbon structured materials and the preparation methods and combustion catalysis of supported catalysts by combining with metal particles and oxides were discussed. Based on the summary of the current research progress in the application of nano carbon materials based composite combustion catalysts, it is suggested that the future research direction should be focused on: expanding the design and preparation of new materials, such as carbon points and nitrogen-containing carbon materials to improve the catalytic activity of composite combustion catalysts based on nano-carbon materials; modifying the surface structure of nano carbon materials to improve the dispersion of nano-particles; investigating the catalytic mechanism of nano carbon matrix composites in solid propel lant more deeply to carry out directional application research; summarizing and deducing the existing researches, and designing and screening the high efficiency combustion catalyst by machine learning, which could effectively improve the burning rate, pressure index and combustion stability of solid propel lant. |
来源
|
火炸药学报
,2023,46(7):589-608 【核心库】
|
DOI
|
10.14077/j.issn.1007-7812.202212009
|
关键词
|
纳米材料
;
轻质碳材料
;
固体推进剂
;
复合材料
;
燃烧催化剂
|
地址
|
西安近代化学研究所, 含能材料全国重点实验室, 陕西, 西安, 710065
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1007-7812 |
学科
|
武器工业;航天(宇宙航行) |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7537044
|
参考文献 共
100
共5页
|
1.
赵凤起.
固体推进剂燃烧催化剂,2016
|
CSCD被引
13
次
|
|
|
|
2.
Zhang Y. Improve the catalytic activity of α-Fe_2O_3 particles in decomposition of ammonium perchlorate by coating amorphous carbon on their surface.
Journal of Solid State Chemistry,2011,184(2):387-390
|
CSCD被引
6
次
|
|
|
|
3.
严启龙. 浅谈固体推进剂燃烧催化剂的评判标准.
含能材料,2019,27(4):266-269
|
CSCD被引
10
次
|
|
|
|
4.
Yu C. Shape-controlled syntheses of Co_3O_4 nanowires arrays with excellent catalytic performances upon ammonium perchlorate decomposition.
Materials Research Bulletin,2018,97(7):483-489
|
CSCD被引
8
次
|
|
|
|
5.
Aziz A. Review on typical ingredients for ammonium perchlorate based solid propellant.
Applied Mechanics and Materials,2015,4014(1547):470-475
|
CSCD被引
4
次
|
|
|
|
6.
张正中. 纳米材料在固体推进剂中的应用进展.
化学推进剂与高分子材料,2016,14(6):37-44
|
CSCD被引
7
次
|
|
|
|
7.
王志超. 纳米碳在含能材料中的应用进展.
含能材料,2022,30(7):752-762
|
CSCD被引
2
次
|
|
|
|
8.
Vollath D. Nanoparticles for energetic applications-formation and aggregation.
FirePhysChem,2022,2(4):357-366
|
CSCD被引
1
次
|
|
|
|
9.
孟胜皓. 新型碳材料及其复合物在推进剂催化中的应用.
兵器装备工程学报,2019,40(4):67-70
|
CSCD被引
2
次
|
|
|
|
10.
Yan Q L. Highly energetic compositions based on functionalized carbon nanomaterials.
Nanoscale,2016,8(9):4799-4851
|
CSCD被引
33
次
|
|
|
|
11.
Yan Q L. Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-,and AP-based energetic compositions.
Progress in Energy and Combustion Science,2016,57:75-136
|
CSCD被引
47
次
|
|
|
|
12.
汪多仁. 纳米炭黑(燃料推进剂)的开发与应用进展.
炭素,2016(4):37-42
|
CSCD被引
1
次
|
|
|
|
13.
任秀秀. 纳米复合含能材料的制备方法、复合体系及其性能的研究进展.
材料导报,2019,33(23):3939-3948
|
CSCD被引
10
次
|
|
|
|
14.
Xia X H. Preparation of multi-walled carbon nanotube supported TiO_2 and its photocatalytic activity in the reduction of CO_2 with H_2O.
Carbon,2007,45:717-721
|
CSCD被引
36
次
|
|
|
|
15.
王建灵. 固体推进剂易损性试验研究.
兵工自动化,2017,36(7):60-62
|
CSCD被引
2
次
|
|
|
|
16.
谢剑宏. 国外纳米铝粉应用推进剂研究进展.
化学推进剂与高分子材料,2002(5):15-17
|
CSCD被引
1
次
|
|
|
|
17.
He W. Highly reactive metastable intermixed composites (MICs): preparation and characterization.
Advanced Materials,2018,30(41):1706293
|
CSCD被引
40
次
|
|
|
|
18.
江治. 纳米金属粉对HMX热分解特性的影响.
推进技术,2002,23(3):258-261
|
CSCD被引
30
次
|
|
|
|
19.
Dreizin E L. Metal-based reactive nanomaterials.
Progress in Energy and Combustion Science,2009,35(2):141-167
|
CSCD被引
54
次
|
|
|
|
20.
Siegert B. Reduced-sensitivity nanothermiter containing manganese oxide filled carbon nanofibers.
Journal of Physical Chemistry C,2010,114(46):19562-19568
|
CSCD被引
8
次
|
|
|
|
|